

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Preparation of Hematite Powders with Plate-Like Morphology from Titania Wastes by Solvent Extraction Followed by Precipitation Stripping and Hydrothermal Synthesis

Jesty Thomas^a, G. D. Surender^a, M. L. P. Reddy^a

^a Ion-specific Separation Science and Technology Group, Regional Research Laboratory (CSIR), Thiruvananthapuram, India

Online publication date: 08 July 2010

To cite this Article Thomas, Jesty , Surender, G. D. and Reddy, M. L. P.(2005) 'Preparation of Hematite Powders with Plate-Like Morphology from Titania Wastes by Solvent Extraction Followed by Precipitation Stripping and Hydrothermal Synthesis', *Separation Science and Technology*, 39: 7, 1695 – 1715

To link to this Article: DOI: 10.1081/SS-120030798

URL: <http://dx.doi.org/10.1081/SS-120030798>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Preparation of Hematite Powders with Plate-Like Morphology from Titania Wastes by Solvent Extraction Followed by Precipitation Stripping and Hydrothermal Synthesis

Jesty Thomas, G. D. Surender, and M. L. P. Reddy*

Ion-specific Separation Science and Technology Group,
Regional Research Laboratory (CSIR),
Thiruvananthapuram, India

ABSTRACT

This paper embodies the results of the investigations carried out on the solvent extraction of iron(III), magnesium(II), aluminum(III), titanium(IV), vanadium(V), chromium(III), and manganese(II) from hydrochloric acid solutions using tributylphosphate (TBP) in kerosene as an extractant. The results demonstrate that iron(III) is extracted into kerosene as $\text{HFeCl}_4 \cdot 2\text{TBP}$. On the other hand, magnesium(II), aluminum(III), titanium(IV), vanadium(V), chromium(III) and manganese(II) were not

*Correspondence: M. L. P. Reddy, Ion-specific Separation Science and Technology Group, Regional Research Laboratory (CSIR), Thiruvananthapuram 695 019, India; Fax: +91-471-2491712; E-mail: mlpreddy@yahoo.co.uk

extracted with TBP from 2.0 mol/dm³ hydrochloric acid solutions. The potential of the TBP system for the recovery of high purity ferric chloride from the simulated waste chloride liquors of the titanium minerals processing industry was assessed. Studies were also carried out to prepare hematite powders from titania wastes by solvent extraction combined with precipitation stripping and hydrothermal synthesis. The iron oxide powders were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and particle size analysis. The recycling capacity of the TBP system was tested by both extraction and infrared (IR) spectral data.

Key Words: Hematite powders; Solvent extraction separation; Precipitation stripping; Hydrothermal synthesis; Titania wastes.

INTRODUCTION

The manufacture of versatile white pigment, TiO₂, through chloride process generates large amounts of acidic waste chloride liquors containing multivalent metal ions such as magnesium(II), aluminum(III), titanium(IV), vanadium(V), chromium(III), manganese(II), iron(II), and iron(III). The typical composition of the waste chloride liquor from the titanium minerals processing industry is given in Table 1. The management of the waste liquors from the titanium minerals processing industry represents a major environmental issue, affecting every industrialized country. Pyrohydrolysis of the spent acid for the recovery of hydrochloric acid generates impure iron oxide containing several other metal ions with no marketable outlets and, hence, results as a solid waste. Further, many valuable metal species were not

Table 1. Typical composition of waste chloride liquor from titanium minerals processing industry (Kerala Minerals and Metals Ltd., India).

Constituent	g/dm ³
FeCl ₂	170–210
FeCl ₃	40–60
MgCl ₂	15–16
MnCl ₂	7–8
AlCl ₃	3–6
TiOCl ₂	2–3
CrCl ₃	3–7
VOCl ₃	3–4
HCl	30–40

recovered for potential use. The more our economy recovers and recycles useful metals from its wastes, the less mining will be needed and less environmental damage will result from waste disposal. Nowadays, solvent extraction is being used for the recovery of metal values from industrial wastes streams.^[1,2] Recently, a solvent extraction process was reported from our laboratory for the recovery of high purity ferric chloride from the titanium minerals processing industry using a mixed-solvent system consisting of tributylphosphate (TBP) and methyl isobutyl ketone (MIBK).^[3] However, the above process has some drawbacks, as it employs MIBK. As is well known, MIBK suffers from drawbacks such as low flash point, high vapor pressure, and solubility in the aqueous phase. In order to overcome the problems associated with the use of MIBK, in the present study, TBP in kerosene was explored as an extractant for the selective extraction of iron(III) from the waste chloride liquors of the titanium minerals processing industry.

Ultrafine iron oxide powders have a wide range of applications, including use as catalysts, pigment, recording media, and ferrofluids.^[4-6] Various methods of preparing iron oxide ultrafine powders, such as spray pyrolysis,^[7] forced hydrolysis,^[8] freeze-drying,^[9] mechanochemical processing,^[10] microwave irradiation of ferrous hydroxide,^[11] microemulsion technique,^[12] and hydrothermal synthesis from a solution of FeCl_3 and iron powder^[13,14] have attracted much attention. A technique for controlling particle size, morphology, and size distribution is critical in synthesizing and processing of iron oxide. Hydrothermal preparation is one of the promising soft chemical routes to obtain crystalline and phase pure products at low temperatures. As a part of our ongoing research efforts for the recovery of metal values from titania wastes, in the present study, an attempt was made to recover high purity hematite powders by solvent extraction technique followed by precipitation stripping and hydrothermal synthesis.

EXPERIMENTAL

Reagents and Apparatus

TBP supplied by Aldrich Chemical Company, USA, was used in the present study. Decanol supplied by Merck, Germany, was used as a modifier. Distilled kerosene (boiling range 160–200°C, composed of aliphatic hydrocarbons) was used as a diluent in this work. All other chemicals used were of analytical reagent grade.

Iron(III) stock solution was prepared by dissolving 324.42 g of FeCl_3 in concentrated hydrochloric acid and diluting to 1.0 dm³ with distilled water. Stock solutions of magnesium(II), aluminum(III), chromium(III), and

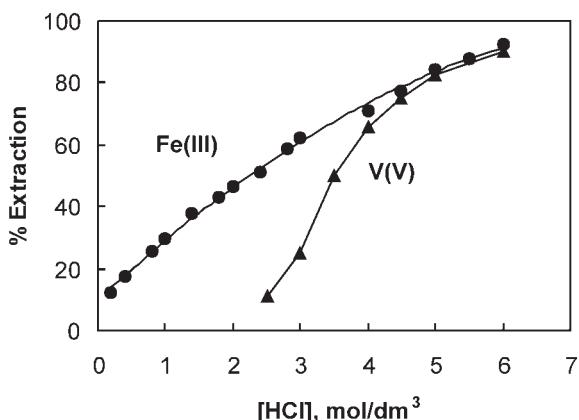
manganese(II) were prepared by dissolving 12.32 g of $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 18.75 g of $\text{Al}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$, 25 g of $\text{CrK}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$, and 8.45 g of $\text{MnSO}_4 \cdot \text{H}_2\text{O}$ in 1.0 dm^3 of distilled water, respectively. Titanium(IV) solutions were prepared from TiCl_4 (Spectrochem, India; purity = 99.0%) by diluting to the required concentration with hydrochloric acid. Vanadium(V) stock solution was prepared by dissolving 5.85 g of ammonium monovanadate in hydrochloric acid and diluting it to 1.0 dm^3 with distilled water. Freshly prepared solutions of vanadium(V) were used in all the experimental studies to prevent partial reduction to tetravalent vanadium in hydrochloric acid solutions with respect to time.^[15] Suitably diluted stock solutions of the above mentioned metal ions were used in the extraction and analytical studies.

A Hitachi 220 double beam microprocessor-controlled spectrophotometer (Tokyo, Japan) was used for measuring absorbances. An Orion 720A ion analyzer (Beverly, USA) was used for the pH measurements. A Perkin Elmer Analyst 100 atomic absorption spectrophotometer (Norwalk, USA) was used for the analysis of metal ions in multicomponent mixtures. A Parr 4842 reactor (USA) was used for hydrothermal synthesis. The reactor was A Seifert equipment; CuK_α radiation (Holland) was used for x-ray diffraction patterns. A Nicolet impact 400D IR spectrometer using KBr (Madison WI) was used for infrared (IR) spectra. A Jeol JSM 5600LV scanning electron microscope (Tokyo, Japan) was used for SEM studies. A Sedigraph 5100 x-ray based particle size analyzer (Micromeritics, USA) was used for the particle size analysis.

Extraction and Analytical Procedures

Solvent extraction and stripping experiments were carried out by shaking required volumes of aqueous and organic phases in a glass-stoppered vial using a mechanical shaker at $303 \pm 1 \text{ K}$. Preliminary experiments showed that the extraction equilibrium was attained within 2 min. After phase separation, the concentration of the specific metal ion remaining in the aqueous phase was determined by standard procedures. Thus, iron(III) was analyzed by the standard SnCl_2 reduction- $\text{K}_2\text{Cr}_2\text{O}_7$ titration method or spectrophotometrically by 1,10-phenanthroline method (whenever the concentrations were low).^[16] Magnesium(II), aluminum(III), and chromium(III) were analyzed spectrophotometrically using Eriochrome black-T,^[16] Eriochrome Cyanine R,^[16] and 1,5-diphenyl carbazide,^[17] respectively. Vanadium(V) and titanium(IV) were analyzed spectrophotometrically using hydrogen peroxide.^[16] Manganese(II) was analyzed titrimetrically using EDTA.^[18] The concentration of the metal ion in the organic phase was obtained by mass balance. The distribution ratio, D , is defined as the ratio of the concentration

of metal ion in the organic phase to that present in the aqueous phase. The batch type counter-current extraction studies were performed at a laboratory scale using separatory funnels of suitable volume. The concentrations of the above metal ions in simulated waste chloride liquor were determined using an atomic absorption spectrophotometer.


Hydrothermal Synthesis

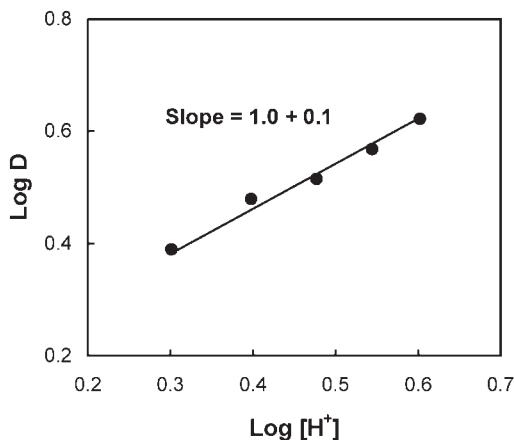
A pressure reactor with monel alloy as material of construction and lined with teflon (capacity of 600 cm³) was used to synthesize the iron oxide powders. Temperatures were varied from 120°C to 180°C (under autogeneous pressure corresponding to the temperature) with constant stirring (200 rpm). The heating time in the hydrothermal reactor was varied between 30 and 120 min. The precursor, ferric hydroxide used in the hydrothermal transformation was prepared by the following procedure: the iron hydroxide was prepared from the ferric chloride loaded organic phase obtained from the solvent extraction process by precipitation stripping using sodium hydroxide in the range 1.5–3.0 mol/dm³. The alkaline suspension containing iron hydroxide was then separated from the organic phase and transferred into a hydrothermal reactor. After hydrothermal reaction, the powders were filtered, washed with deionized water and acetone, dried at 50°C, and stored in the desiccator. The precipitates were characterized by XRD analysis and scanning electron microscopy (SEM). The particle size was analyzed by x-ray based particle size analyzer.

RESULTS AND DISCUSSION

Effect of Hydrochloric Acid Concentration

The extraction behavior of iron(III) (1.0 mol/dm³), magnesium(II) (0.04 mol/dm³), aluminum(III) (0.03 mol/dm³), titanium(IV) (0.03 mol/dm³), vanadium(V) (0.02 mol/dm³), chromium(III) (0.01 mol/dm³), and manganese(II) (0.03 mol/dm³) present in the waste chloride liquors of the titanium minerals processing industry was investigated as a function of hydrochloric acid concentration (0.2–6.0 mol/dm³) using 2.5 mol/dm³ TBP in kerosene as an extractant and the results are shown in Fig. 1. The extraction of iron(III) was found to increase with increasing hydrochloric acid concentration in the aqueous phase. On the other hand, magnesium(II), aluminum(III), titanium(IV), vanadium(V), chromium(III), and manganese(II) were found

Figure 1. Effect of hydrochloric acid concentration on the extraction of iron(III) ($1.0 \text{ mol}/\text{dm}^3$) and vanadium(V) ($0.02 \text{ mol}/\text{dm}^3$) using $2.5 \text{ mol}/\text{dm}^3$ TBP in kerosene.


not to be extracted into the organic phase between 0.2 and $2.0 \text{ mol}/\text{dm}^3$ hydrochloric acid concentrations. In view of the better extraction efficiency and selectivity observed between iron(III) and other associated metal ions, in the present study $2.0 \text{ mol}/\text{dm}^3$ hydrochloric acid was chosen as the feed acidity in the subsequent experiments.

The effect of hydrogen (2.0 – $4.0 \text{ mol}/\text{dm}^3$) and chloride ion (3.5 – $6.0 \text{ mol}/\text{dm}^3$) concentrations on the extraction of iron(III) chloride ($1.0 \text{ mol}/\text{dm}^3$), respectively, was studied from $\text{HCl} + \text{NaCl}$ mixtures using $2.5 \text{ mol}/\text{dm}^3$ TBP in kerosene as an extractant and the results are depicted in Figs. 2 and 3. From the slopes of the log–log plots, it is clear that iron(III) is extracted as HFeCl_4 into the organic phase.

Effect of TBP Concentration

The effect of TBP concentration (1.5 – $3.3 \text{ mol}/\text{dm}^3$) on the extraction of iron(III) chloride was investigated at constant metal ion ($1.0 \text{ mol}/\text{dm}^3$) and hydrochloric acid ($2.0 \text{ mol}/\text{dm}^3$) concentrations and the results are shown in Fig. 4. It is clear from the results that the extraction efficiency of iron(III) increases with increasing TBP concentration in the organic phase. From the slope of the plot, $\log D$ vs. $\log[\text{TBP}]$, it is inferred that two molecules of TBP are involved in the extracted complex of iron(III).

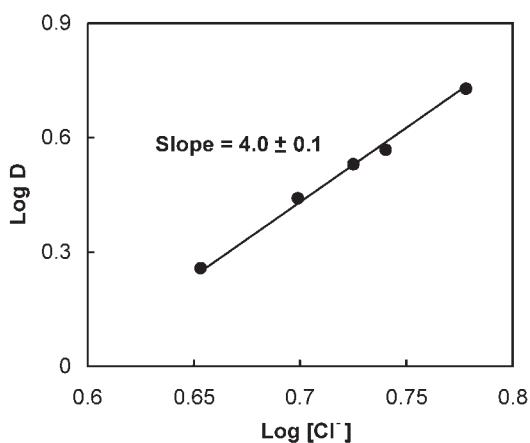
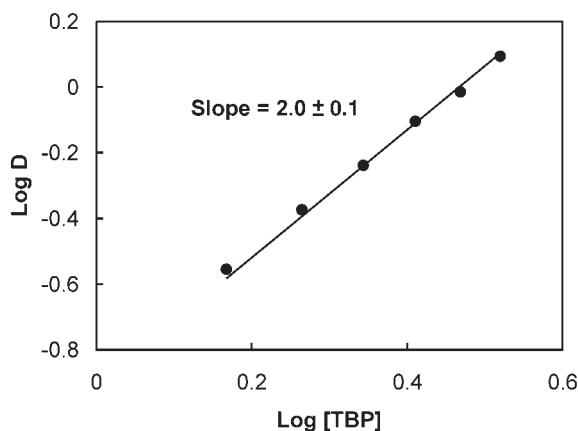


Figure 2. Effect of hydrogen ion concentration on the extraction of iron(III) at constant Cl^- concentration. $\text{FeCl}_3 = 1.0 \text{ mol}/\text{dm}^3$; $[\text{Cl}^-] = 4.0 \text{ mol}/\text{dm}^3$; TBP = $2.5 \text{ mol}/\text{dm}^3$.


Extraction Equilibrium

Based on the preceding studies the extraction equilibrium of iron(III) using TBP as an extractant can be represented as:

Figure 3. Effect of chloride ion concentration on the extraction of iron(III) at constant H^+ concentration. $\text{FeCl}_3 = 1.0 \text{ mol}/\text{dm}^3$; $[\text{H}^+] = 2.0 \text{ mol}/\text{dm}^3$; TBP = $2.5 \text{ mol}/\text{dm}^3$.

Figure 4. Effect of TBP concentration on the extraction of iron(III). $\text{FeCl}_3 = 1.0 \text{ mol}/\text{dm}^3$; $\text{HCl} = 2.0 \text{ mol}/\text{dm}^3$.

The above extraction equilibrium is in good agreement with the earlier report by Sahu and Das^[19] for the extraction of iron(III) from hydrochloric acid solutions with TBP as an extractant. From our laboratory, similar extracted complexes have also been observed for the extraction of iron(III) from 2.0 mol/dm³ HCl solutions with a mixed-solvent system consisting of TBP (70 vol.%) and MIBK (30 vol.%).^[3] On the other hand, Majumdar and De^[20] reported the extracted species as $\text{FeCl}_3 \cdot 3\text{TBP}$ from 2.0 mol/dm³ HCl solutions with 100% TBP for the extraction of iron(III). Saji et al.^[21] have also reported $\text{HFeCl}_4 \cdot 2\text{TRPO}$ for the extraction of iron(III) from HCl solutions using trialkylphosphine oxide (TRPO) as an extractant.

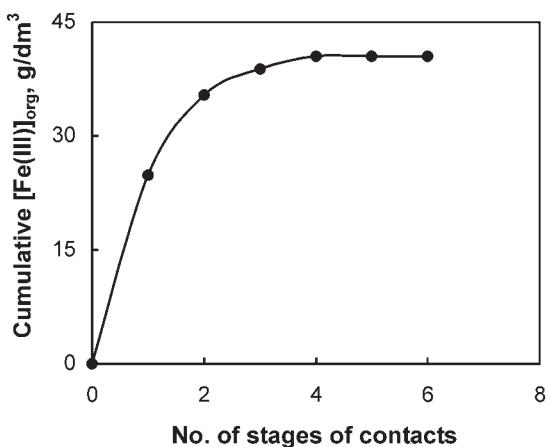
Effect of Diluent

The extraction efficiency of iron(III) (1.0 mol/dm³) from 2.0 mol/dm³ hydrochloric acid solutions was investigated using 2.5 mol/dm³ TBP in various diluents and the results are shown in Table 2. The results clearly demonstrate that diluents such as benzene, xylene, toluene, and kerosene, which have low dielectric constants, show higher extraction efficiency for iron(III). On the other hand, diluents having higher dielectric constants, such as chloroform, gave poor extraction. This may be due to the strong interaction between TBP and chloroform through hydrogen bonding.^[22] However, in the present work, MIBK, which has high dielectric constant, shows high extraction for

Table 2. Effect of nature of diluent on the extraction of 1.0 mol/dm³ iron(III) chloride from 2.0 mol/dm³ HCl by 2.5 mol/dm³ TBP in kerosene.

Diluent	Dielectric constant	% Extraction
Kerosene	2.00	46.3
Cyclohexane	2.02	47.3
Xylene	2.26	48.4
Toulene	2.24	47.3
Benzene	2.28	47.3
Chloroform	4.90	38.0
MIBK	13.11	54.7

iron(III). This can be attributed to the synergistic effect of the mixed-solvent system as described in our previous publication.^[23] In view of the commercial availability and high extraction efficiency, kerosene was used as the diluent in the present study.

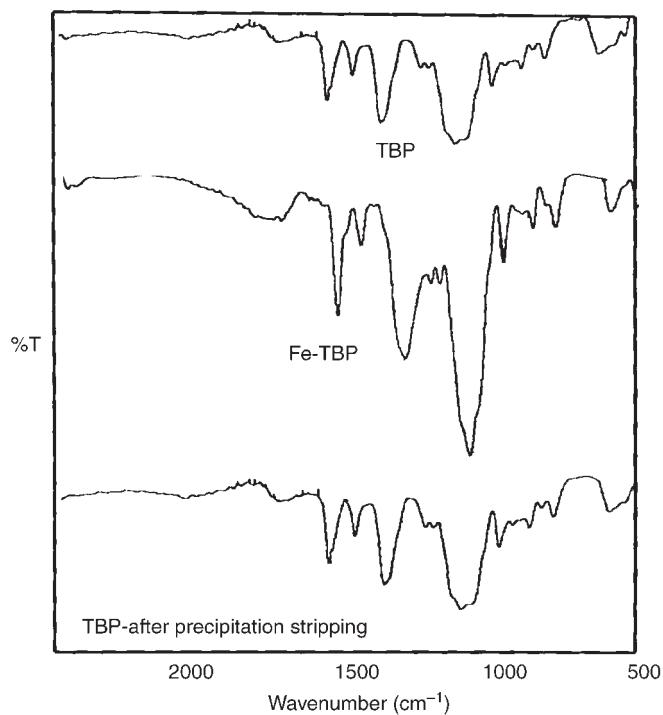

Loading Capacity

Aliquots of 10 cm³ of 2.5 mol/dm³ TBP in kerosene were repeatedly extracted with equal volumes of the aqueous phase containing 1.0 mol/dm³ of iron(III) chloride in 2.0 mol/dm³ hydrochloric acid at 303 ± 1 K for 10 min. The aqueous phases were analyzed for iron(III) after each stage of extraction and the amount of iron(III) content transferred into the extractant phase was calculated. The cumulative concentration of iron(III) in the organic phase after each stage of contact was determined and plotted against the number of stages of contacts (Fig. 5). The loading capacity of 2.5 mol/dm³ TBP in kerosene for the extraction of iron(III) from 2.0 mol/dm³ hydrochloric acid solutions was calculated and found to be 40.5 g of iron(III)/dm³ of the solvent.

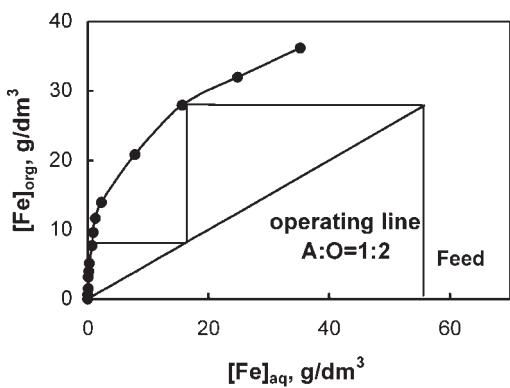
IR Spectra of Iron(III)-TBP Complex

The IR spectra of the extracted complex, HFeCl₄·2TBP, show that, the stretching frequency of the P=O in TBP has shifted from 1276 to 1243 cm⁻¹ (Fig. 6). These spectral changes confirm the nature of the extracted complex formed via the coordination of a lone pair of electrons of oxygen in the P=O group of TBP to the metal ion.

Figure 5. Loading capacity of the solvent system 2.5 mol/dm³ TBP in kerosene for the extraction of iron(III) chloride. HCl = 2.0 mol/dm³.


Extraction Isotherm

The extraction isotherm was obtained using a typical feed solution containing 1.0 mol/dm³ of iron(III) chloride and 2.0 mol/dm³ of hydrochloric acid using 2.5 mol/dm³ of TBP in kerosene as an extractant and the results are depicted in Fig. 7. The McCabe-Thiele plot for a feed solution containing 1.0 mol/dm³ of iron(III) chloride showed that almost quantitative extraction of iron(III) was possible in two counter-current extraction stages at an aq:org phase ratio (A:O) of 1:2.


Stripping Behavior of Iron(III) Chloride with Hydrochloric Acid

The effect of hydrochloric acid concentration on iron(III) stripping from a loaded organic solvent system of 2.5 mol/dm³ of TBP in kerosene [0.5 mol/dm³ Fe(III)] was investigated and the results are shown in Fig. 8. It is clear from the results that the percentage stripping of iron(III) decreases with increasing hydrochloric acid concentration. In view of its better stripping efficiency, 0.1 mol/dm³ hydrochloric acid was chosen as a stripping agent for the recovery of iron(III) chloride from the loaded organic phase.

Figure 6. IR spectra of pure TBP, Fe-TBP complex, and TBP after precipitation-stripping.

Figure 7. McCabe-Thiele plot for iron(III) extraction. $\text{Fe(III)} = 55.85 \text{ g/dm}^3$; $\text{HCl} = 2.0 \text{ mol/dm}^3$.

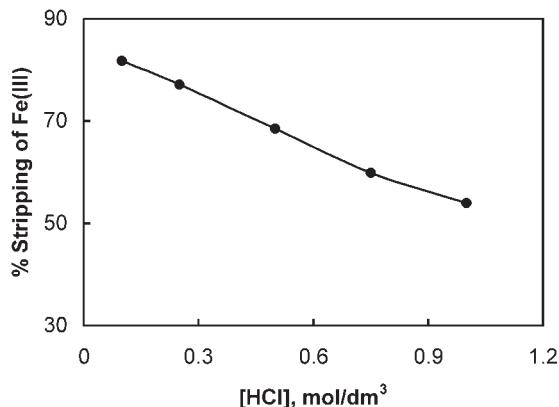


Figure 8. Stripping behavior of iron(III) using hydrochloric acid.

Stripping Isotherm

The loaded organic phase containing 27.92 g/dm^3 iron(III) was used to carry out the stripping studies using 0.1 mol/dm^3 hydrochloric acid and the results are shown in Fig. 9. It is clear from the McCabe-Thiele plot that the quantitative stripping is possible in three counter-current stages with an org : aq phase ratio of 1 : 1.5.

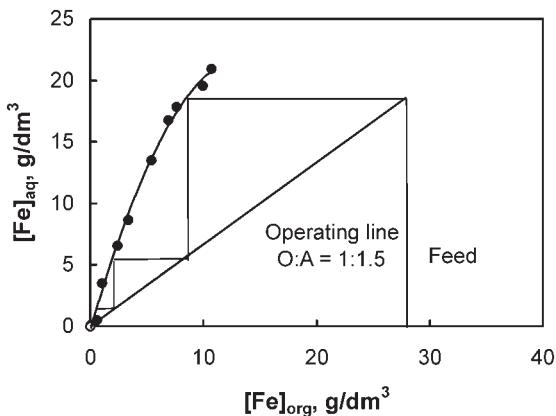


Figure 9. McCabe-Thiele plot for iron(III) stripping. $\text{Fe(III)} = 27.92 \text{ g/dm}^3$; $\text{O:A} = 1:1.5$.

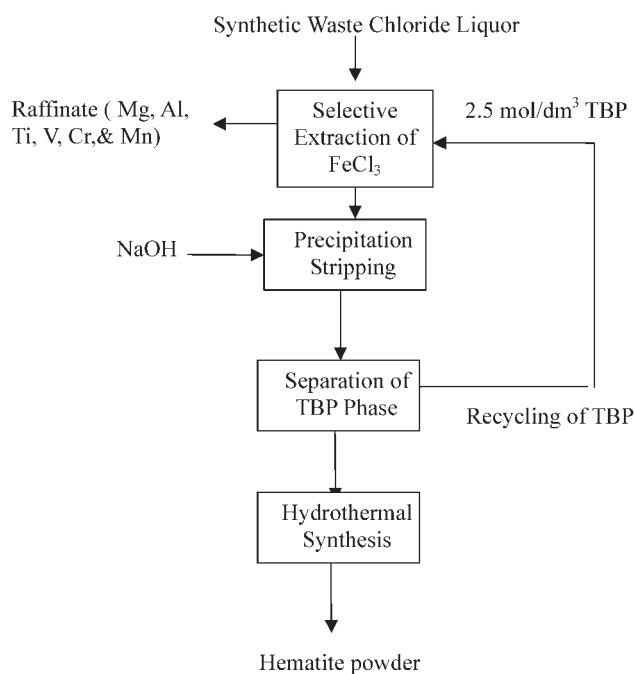
**Extraction and Separation of Iron(III) from Simulated
Waste Chloride Liquors of the Titanium Minerals
Processing Industry**

Based on the above results, a simulated waste chloride liquor consisting of iron(III) (1.03 mol/dm³), magnesium(II) (0.04 mol/dm³), aluminum(III) (0.03 mol/dm³), titanium(IV) (0.03 mol/dm³), vanadium(V) (0.02 mol/dm³), chromium(III) (0.01 mol/dm³), and manganese(II) (0.03 mol/dm³) in 2.0 mol/dm³ hydrochloric acid was prepared and subjected to a batch type counter-current extraction process using 2.5 mol/dm³ TBP in kerosene as an extractant (A : O = 1 : 2). Batch type counter-current extraction and stripping studies were performed at laboratory scale using separatory funnels of suitable volume at 303 ± 1 K. The loaded organic phase was then subjected to three stages of counter-current stripping by employing deionized water of pH = 1 at an O : A phase ratio of 1 : 1.5. Typical results of the process are given in Table 3. The present investigations revealed that TBP can be used as a selective extractant for the recovery of high purity iron(III) chloride (>99.9%) with an yield of 99% from the waste chloride liquors of the titanium minerals processing industry.

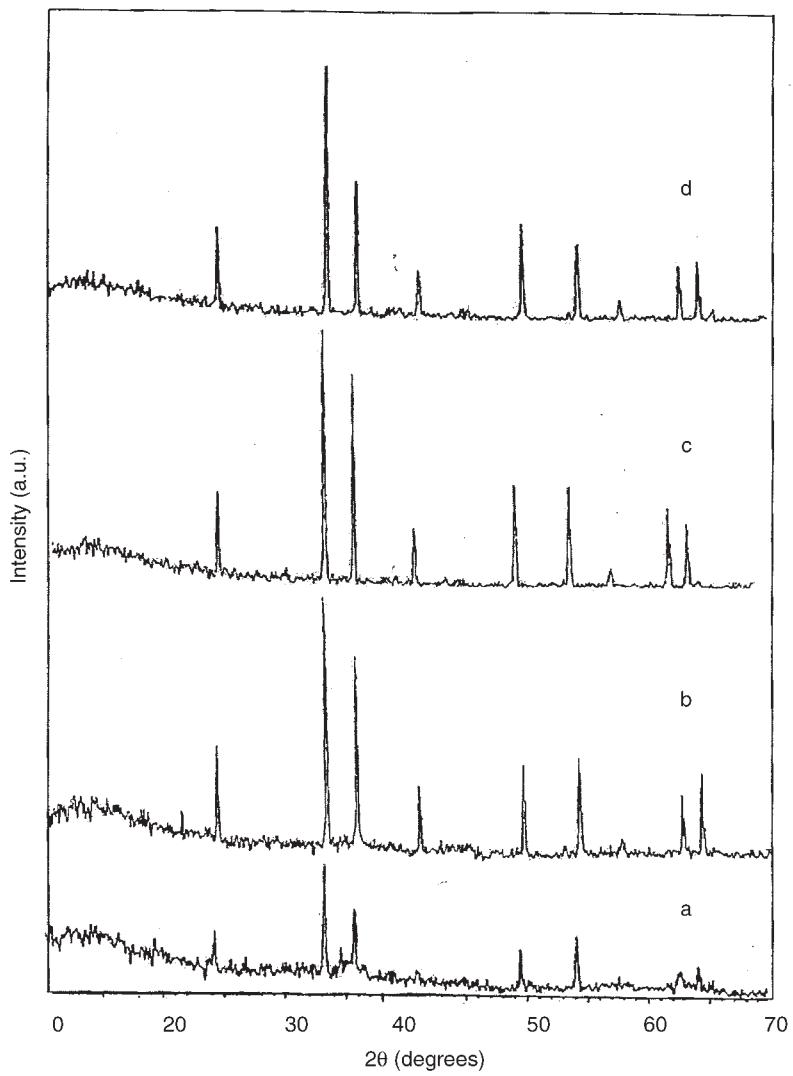
**Hydrothermal Synthesis and Characterization of
Iron Oxide Powders**

The preparation of iron oxide powders comprises the steps of (1) selective extraction of iron(III) chloride from the simulated waste chloride liquor in

Table 3. Extraction of iron(III) chloride from simulated waste liquors of titanium minerals processing industry using 2.5 mol/dm³ in kerosene as an extractant.


Constituent	Feed (mol/dm ³)	Raffinate (mol/dm ³)	Strip solution (mol/dm ³)
Fe(III)	1.03	0.01	0.34
Ti(IV)	0.03	0.03	ND
Mg(II)	0.04	0.04	ND
Mn(II)	0.03	0.03	ND
Al(III)	0.03	0.03	ND
V(V)	0.02	0.02	ND
Cr(III)	0.01	0.01	ND
HCl	2.00	1.20	0.36

Note: Purity of iron(III) chloride = 99.9%, yield = 99%.


three stages of counter-current extraction ($A : O = 1 : 2$) using $2.5 \text{ mol}/\text{dm}^3$ TBP in kerosene as an extractant, (2) precipitation stripping of ferric hydroxide from the loaded organic phase obtained from the solvent extraction stream using sodium hydroxide ($3.0 \text{ mol}/\text{dm}^3$) in an org : aq phase ratio of $1 : 2$, and (3) hydrothermal synthesis of iron oxide powders using the alkaline suspension containing iron hydroxide as the precursor. The iron oxides were characterized by XRD, SEM and particle size. The schematic diagram of the process is shown in Fig. 10.

The XRD patterns of the iron oxide powders synthesized at different temperatures (120 – 180°C) and heating times (30, 60 and 120 min) are shown in Figs. 11 and 12. The diffraction patterns at 120 – 180°C are typical to the standard pattern of hematite powders ($\alpha\text{-Fe}_2\text{O}_3$)^[24] and the intensities of the peaks increases with increase in temperature indicating the growing volume fraction of the crystalline hematite. However, the heating time has only a marginal effect on the crystallinity of the hematite from 60 to 120 min (Fig. 12). On the other hand, poor crystallinity was observed when the heating time was 30 min. Figure 13 shows the XRD patterns of the

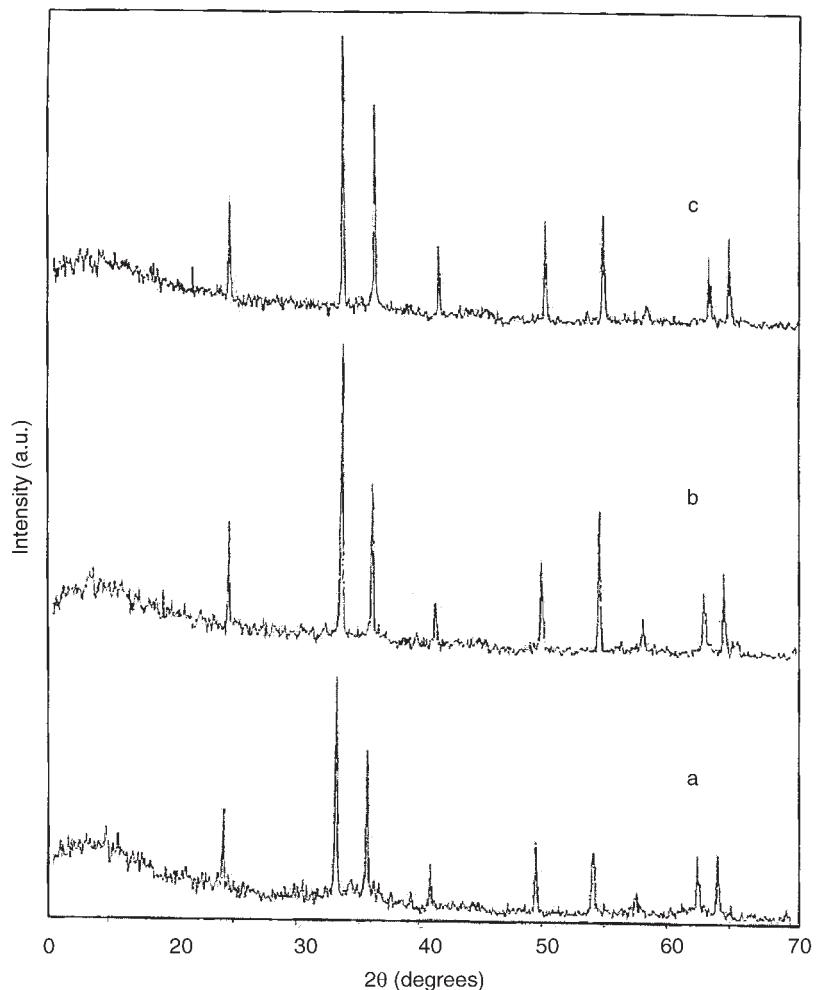

Figure 10. Schematic flow diagram for the preparation of hematite powders.

Figure 11. XRD pattern of hematite powders at different temperatures using 3.0 mol/dm³ sodium hydroxide for precipitation stripping. Reaction time = 120 min; (a) 120°C, (b) 140°C, (c) 160°C, (d) 180°C.

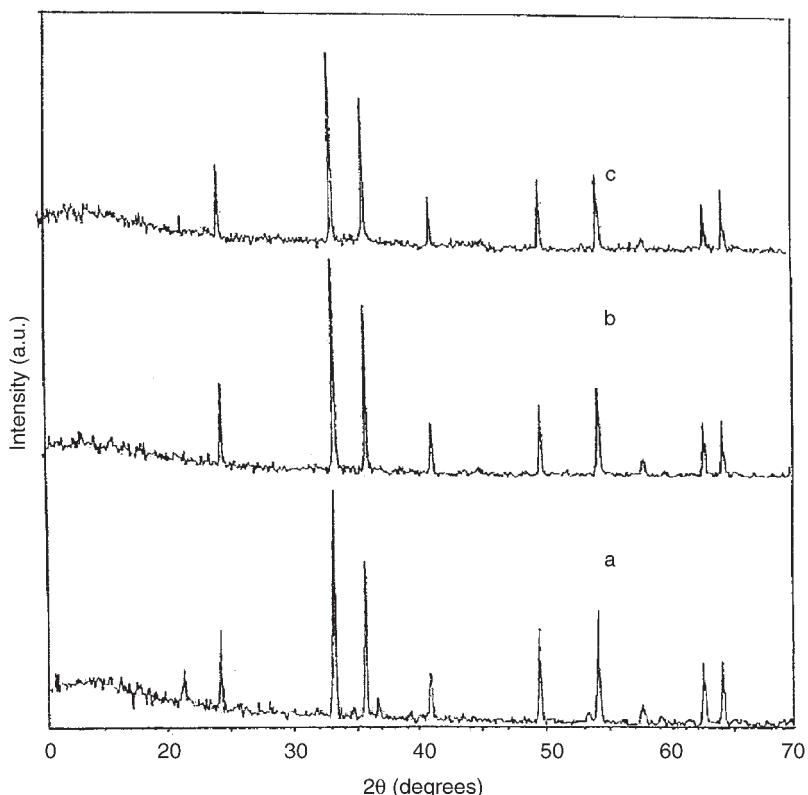


Figure 12. XRD pattern of hematite powders synthesized at different reaction times using $3.0 \text{ mol}/\text{dm}^3$ sodium hydroxide for precipitation stripping. Reaction temperature = 140°C ; (a) 30 min, (b) 60 min, (c) 120 min.

hematite powders obtained by using different sodium hydroxide concentrations ($1.5\text{--}3.0 \text{ mol}/\text{dm}^3$) for precipitation-stripping at 140°C and heating time of 120 min. The diffraction pattern obtained at $1.5 \text{ mol}/\text{dm}^3$ sodium hydroxide contains some iron hydroxide peaks, which indicates the poor conversion of iron hydroxide into hematite powders.

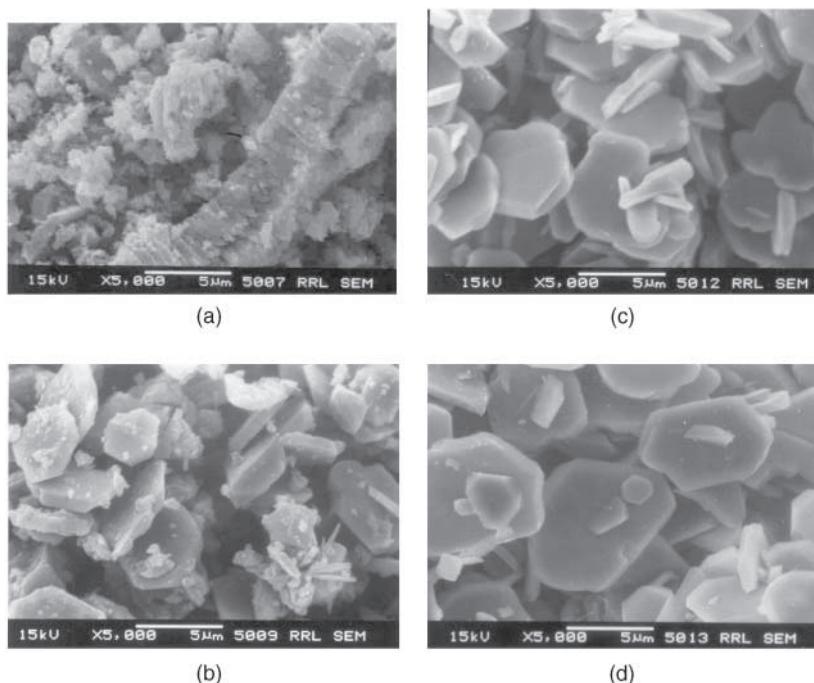


Figure 13. XRD pattern of hematite powders synthesized using different sodium hydroxide concentrations for precipitation stripping at 140°C. Reaction time = 120 min; (a) 1.5 mol/dm³, (b) 2.5 mol/dm³, (c) 3.0 mol/dm³.

Figure 14 shows the scanning electron micrographs of iron oxides prepared at 120°C, 140°C, 160°C, and 180°C, for a heating time of 120 min. The SEM pictures of powders synthesized at 120°C show the presence of amorphous precipitate. On the other hand, the SEM pictures of powders synthesized at 140°C, 160°C, and 180°C show plate-like morphology. The average particle diameters of hematite powders synthesised at 120°C, 140°C, 160°C, and 180°C for 120 min using 3.0 mol/dm³ sodium hydroxide for precipitation stripping are, 4.0, 4.4, 4.6, and 5.0 μm, respectively, and that of hematite powders prepared under the reaction times 30, 60, and 120 min at 140°C, using 3.0 mol/dm³ sodium hydroxide for precipitation stripping are 3.0, 3.75, and 4.4 μm, respectively. The average particle diameters of hematite

Figure 14. Scanning electron micrographs of hematite powders prepared at different temperatures for 120 min using 3.0 mol/dm³ sodium hydroxide. (a) 120°C, (b) 140°C, (c) 160°C, (d) 180°C.

powders obtained by using 1.5, 2.5, and 3.0 mol/dm³ sodium hydroxide for precipitation stripping at 140°C for 120 min are 2.75, 4.25, and 4.4 μm, respectively.

In the literature there have been several reports concerning the synthesis of hematite powders by various methods.^[7–12] However, the use of hydrothermal techniques shows versatility for generating hematite powders of different shapes, such as acicular, plate-like, spherical, and polyhedral, which would have potential applications in magnetic recording media, pigment for anticorrosive protection, soft ferrites, inorganic pigment, catalysis, etc.^[14] The shape and the size of hematite powders obtained through hydrothermal synthesis has been shown to depend on the precursor composition, the neutralizing media, temperature, reaction time, and the concentration ratio of Fe(II) to OH. The role of various process conditions cited has not been investigated in detail by earlier workers. In the present study, by varying the reaction temperature in the range 120–180°C, it was observed that plate-

like morphology could be obtained even at the low temperature of 140°C with constant stirring. As a comparison, Lucian et al.^[14] have reported plate-like structures only at a temperature of 180°C. Further, the present study has shown plate-like morphology could be achieved at a much lower NaOH concentration (2.5 mol/dm³), in comparison with an earlier report^[14] (4.0 mol/dm³). Thus, the present investigation provides an optimum set of process conditions for the conversion of organic extractant loaded ferric chloride to hematite powders of plate-like morphology.

Recycling Capacity of the Solvent

The recycling capacity of the extractant was tested, first by extracting iron(III) using 2.5 mol/dm³ TBP from 2.0 mol/dm³ of hydrochloric acid solutions containing 1.0 mol/dm³ ferric chloride and then stripping with 3.0 mol/dm³ sodium hydroxide in an org:aq phase ratio of 1:2. The stripped organic phase was reused for extraction. The extraction efficiency was found to be the same as that of fresh extractant. Further, the recycling capacity was also confirmed by IR spectral data (Fig. 6). It is clear from the IR data that the P=O stretching frequency of TBP was not changed even after precipitation-stripping. The results revealed practically insignificant change in the extraction efficiency of the solvent even after five cycles of extraction and stripping processes.

CONCLUSION

The present investigations clearly highlight that hematite powders of plate-like morphology can be prepared from titania waste chloride liquors by solvent extraction using TBP as an extractant, followed by precipitation-stripping and hydrothermal synthesis, at moderate temperatures. The plate-like hematite powders may find potential application as pigments for anticorrosive protection.

ACKNOWLEDGMENTS

The authors wish to thank Director, RRL, Trivandrum, for his constant encouragement and Department of Science and Technology, New Delhi, for financial support.

REFERENCES

1. Flett, D.S.; Monhemius, A.J. Solvent extraction for iron control in hydrometallurgy. In *Iron Control and Disposal*; Proceedings of the Second International Symposium on Iron Control in Hydrometallurgy, Ottawa, Canada, Oct. 20–23, 1996; Dutrizac, J.E., Harris, G.B., Eds.; CIMM: Montreal, 1996; 331–356.
2. Francis, T.; Meera, R.; Reddy, M.L.P. Extraction of mercury (II) with dicyclohexano-18-crown and its application to industrial wastes. *Sep. Sci. Technol.* **2001**, *36*, 2341–2353.
3. Reddy, M.L.P.; Saji, J. Recovery of high purity iron(III), titanium(IV) and vanadium(V) from waste chloride liquors of the titanium minerals processing industry by solvent extraction. In *Chloride Metallurgy 2002 Vol. II*, Proceedings of the 32nd Annual Hydrometallurgy Meeting and International Conference on Practice and Theory of Chloride/metal Interaction, Montreal, Canada, October 19–23, 2002; Peek, E., Van Weert, G., Eds.; MET SOC, CIIM: Montreal, 2002, 513–526.
4. Sugimoto, M. The past, present and future of ferrites. *J. Am. Ceramic Soc.* **1999**, *82*, 269–280.
5. Bate, G. Magnetic recording materials since 1975. *J. Magn. Magn. Mater.* **1999**, *100*, 413–424.
6. Ida, T.; Tsuiki, H.; Uneo, A. Characterization of iron oxide in Fe_2O_3/SiO_2 catalyst. *J. Catal.* **1987**, *106*, 428–439.
7. González-Carreño, T.; Morales, M.P.; Gracia, M.; Serna, C.J. Preparation of uniform γ - Fe_2O_3 particles with nanometer size by spray pyrolysis. *Mater. Lett.* **1993**, *18*, 151–155.
8. Domingo, C.; Rodríguez-Clemente, R.; Blesa, M. Morphological properties of α -FeOOH, γ -FeOOH and Fe_3O_4 obtained by oxidation of aqueous Fe(II) solutions. *J. Colloid Interface Sci.* **1994**, *165*, 244–252.
9. Bermejo, E.; Dantas, T.; Lacour, C.; Quarton, M. Mechanism of formation of nanocrystalline hematite prepared by freeze-drying. *Mater. Res. Bull.* **1995**, *30*, 645–652.
10. Ding, J.; Tsuzuki, T.; McCormick, P.G. Hematite powders synthesized by mechanochemical processing. *Nanostruct. Mater.* **1997**, *8*, 739–747.
11. Dong, D.; Hong, P.; Dai, S. Preparation of uniform β -FeO(OH) colloidal particles by hydrolysis of ferric salts under microwave irradiation. *Mater. Res. Bull.* **1995**, *30*, 537–541.
12. Chhabra, V.; Maitra, A.N.; Ayyub, P.; Chattopadhyay, S. Preparation of acicular γ - Fe_2O_3 particles from a microemulsion-mediated reaction. *Mater. Lett.* **1996**, *26*, 21–26.
13. Li, Y.; Liao, H. Hydrothermal synthesis of ultrafine Fe_2O_3 and Fe_3O_4 powders. *Mater. Res. Bull.* **1998**, *33*, 841–844.

14. Lucian, D.; Donia, M.T.; Nicoleta, P.P.; Alina, T.; Ion, B. Hydrothermal synthesis and characterization of some polycrystalline α -iron oxides. *Ceram. Int.* **1999**, *25*, 689–692.
15. Tedesco, P.H.; de Rumi, V.B. Vanadium(V) extraction by tributylphosphate from hydrochloric acid solutions. *J. Inorg. Nucl. Chem.* **1978**, *42*, 269–272.
16. Vogel, A.I. *A Text Book of Quantitative Chemical Analysis*, 5th Ed.; ELBS, Longman: UK, 1989; 645–730.
17. Part 3000—metals—chromium. In *Standard Methods for Examination of Water and Waste-Water*, 20th Ed.; Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Eds.; American Public Health Association: Washington, 1998; 3–65.
18. Vogel, A.I. *A Text Book of Quantitative Chemical Analysis*, 5th Ed.; ELBS, Longman: UK, 1989; 257–416.
19. Sahu, K.K.; Das, R.P. Synergistic extraction of iron(III) at higher concentrations in D2EHPA-TBP mixed solvent systems. *Metall. Trans. B* **1997**, *28B*, 181–189.
20. Majumdar, S.K.; De, A.K. Liquid–liquid extraction of iron(III) with tri-butylphosphate. *Talanta* **1960**, *7*, 1–6.
21. Saji, J.; Rao, T.P.; Iyer, C.S.P.; Reddy, M.L.P. Extraction of iron(III) from acidic chloride solutions by cyanex 923. *Hydrometallurgy* **1998**, *49*, 289–296.
22. Sekine, T.; Hasegawa, Y. *Solvent Extraction Chemistry—Fundamentals and Applications*; Marcel Dekker: New York, 1997; 48–50.
23. Saji, J.; Reddy, M.L.P. Liquid–liquid extraction separation of iron(III) from titania wastes using TBP-MIBK mixed solvent system. *Hydrometallurgy* **2001**, *61* (2), 81–87.
24. Konishi, Y.; Kawamura, T.; Asai, S. Preparation and properties of fine hematite powders by hydrolysis of iron carboxylate solutions. *Metall. Trans. B* **1994**, *25B*, 165–170.

Received September 2003

Accepted December 2003

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Order Reprints" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at

<http://www.dekker.com/servlet/product/DOI/101081SS120030798>